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Abstract: Artificial reefs featuring different shapes and functions have been deployed around the
world, causing impacts on marine ecosystems. However, the approaches typically used to deliver
topological complexity, flexibility and expanding requirements to prospective structures during the
initial design stages are not well established. The aim of this study was to highlight the advan-
tages and provide evidence on how modularity and parametric design can holistically leverage the
performance of multifunctional artificial reefs (MFARs). In particular, the goal was to develop a
parametric design for MFAR and establish a direct relationship between specific design parameters
and the MFAR target functions or design requirements. The idea of implementing the parametric
design for generating the initial biomimetic geometry of the individual modular unit was explored.
Furthermore, possible ways of manipulating the geometric parameters of the individual module and
the whole assembly were proposed. The findings suggest that, by adopting the developed procedure
and the examples studied, several functions may be reached within a single assembly: the promotion
of marine biodiversity restoration, the support of scientific platforms with various sensors, as well
as the development of recreational diving and of touristic attraction areas. Acquired knowledge
suggests that the concept of a nature-like design approach was developed for artificial reefs with
varying scales, complexity and functions, which widens the range of possibilities of how smart design
of human-made underwater structures may contribute to benefiting the near shore ecosystems.

Keywords: artificial reef; parametric design; biomimetic systems; modularity

1. Introduction

Artificial structures designed to attract fish, enhance surfing conditions, protect shore-
line from erosion and perform other functions have been recently installed all around the
world. Long term investment in artificial reef (AR) programs is perceived as important to
promote the restoration of marine ecosystems and to gain more knowledge and understand
the full potential outcomes of such structures worldwide [1–4] and in Europe [5]. Most of
the ARs are conceived to perform single functions; therefore they are typically designed
with a clear focus on a particular function and optimized to perform such a function in
the best way. Among those are the ARs as discussed in [6,7], which are aimed at promot-
ing or supporting artisanal fishery, the ones designed for coastal protection and erosion
mitigation [8], others involving self-growing reticulated structures, coral-reef mimicking
structures and ARs with groins, as discussed in [9–12]. In other cases, ARs are created
to support recreational diving and create attraction locations [13], or for enhancing surf-
ing conditions [11,14]. During the last decade, the concept of multi-functional artificial
reefs (MFAR) have been drawing much more attention, mostly the ones taking advantage
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of constructed structures purposely built to perform secondary functions [15–17]. Addi-
tionally, MFARs are also believed to potentially yield ecological benefits, alongside other
socio-economic and technical advantages [2,18]. Based on the recent past examples, there
seems to exist a solid trend towards the expansion of an AR presence in coastal countries,
as well as an increase in the development of multi-functional capabilities along with marine
restoration [3]. The authors in [19] provided a multidisciplinary study proposing a general-
ized approach for designing and implementing MFARs in the Mediterranean Sea, focusing
mostly on shore protection and surfing enhancing functions. Yet it is not well defined how
the MFAR shape and design can influence function performance, especially if the MFAR is
considered not as a standalone solution, but as part of the built coastal infrastructure.

Natural infrastructures may also be used to help coastal communities become more
resilient and less sensitive to extreme events [20,21]. These are also believed to reduce
the risk of coastal flooding, and the authors analyzed the strengths and weaknesses of
the approach as well as the social impacts. In [22], the authors highlight past projects in
the USA where traditional gray solutions suffered a shift to nature-based solutions and
describe the required efforts for a successful design of the coastal infrastructure. According
to [23–26], coastal nourishment structures can be, in general, classified into two major
groups: gray and green. More recently other intermediate solutions were investigated
and built. Regarding their shape, such infrastructures can be distinguished in a way that
artificial structures typically adopt shore-parallel, regular and linear geometries, sometimes
as basic solutions without a foreseen long-term contribution to the ecosystem [27,28].
Nature-inspired solutions represent a shift to the previous approach and tend to mimic or
promote, e.g., dunes, mangroves and seagrass/kelp forests, providing more irregular and
stochastic shapes (for example [23,24,29,30]), as shown in Figure 1.
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Figure 1. Transition from a gray to a green marine shore infrastructure, adopted from [19].

The nature-inspired solutions group may be subdivided into three subgroups, namely:
hybrid infrastructures, environmentally friendly gray infrastructures and soft infrastruc-
tures. However, purely naturally inspired structures, such as submerged seagrass and
mangrove forests, known for their immense environmental positive impact, prove to be
only partially effective for coastal protection and require appropriate measures of main-
tenance [31,32]. On the other hand, purely gray solutions, such as breakwaters, seawalls
and dikes are installed all over around the world along with recommendations and guide-
lines, summarized in Appendix 3 in [23]. Such structures are commonly created without
considering the appropriate conditions for biodiversity flourishing, offering poor ecolog-
ical value [30,33,34]. Previous studies described the MFAR design as a relatively new
green infrastructure approach, such as when MFARs are fabricated from geotextile con-
tainers, aiming at primarily surfing enhancement and additional functions such as coastal
protection and biodiversity restoration [14,19,35,36]. Alternative approaches are recently
attracting greater attention, based on assembling methodologies for MFAR from individual
modules. These approaches are aimed at reaching wider possibilities of appearance and a
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greater diversity of functions, which become possible by such solutions [37,38]. Among
those, the adoption of modularity brings up scalability and broader geometrical possibilities
in all dimensions.

In a generic sense, MFARs seem to be excessively sophisticated concepts to be used
as marine constructions. This seems even more evident when these are compared to the
classical bulky, gray, monotonous and single purpose constructions that populated the
recent past. The significant costs and harsh exposure conditions experienced by these
structures, whether coastal, nearshore or offshore, seem difficult to justify, particularly
when considering higher levels of sophistication.

Despite their promising attributes, further research should be dedicated to the fact
that these structures may serve as conduits for the spread of invasive species, which may
outcompete native species and disrupt local ecological balances [39]. In addition to the
numerous benefits associated with artificial reefs and ways to address biotic and abiotic
parameters, it is essential to consider the potential ecological risks. MFARs influence local
biodiversity and may attract species not previously found in the area, potentially leading
to shifts in ecosystems dynamics [40]. Moreover, these structures may serve as conduits
for the spread of invasive species, which may outcompete native species and disrupt local
ecological balances [41]. Additionally, by acting as ‘stepping stones’, artificial reefs may
enable species to expand their ranges, leading to unintended changes in coastal habitats [42].
Another important aspect that requires further research is associated with coastal ocean
energy production and extraction, as well as the role of MFARs in ocean zoning. These
structures can be strategically integrated with renewable energy projects, such as offshore
wind farms. This way, such structures not only support energy infrastructure but also en-
hance marine biodiversity by providing habitats for various marine species [41]. Moreover,
MFARs can play a critical role in ocean zoning efforts by delineating areas designated for
conservation, fishing, and energy production, thereby reducing conflicts between different
ocean uses [43]. Furthermore, the adoption of MFARs in energy production sites can
help mitigate some of the ecological disturbances associated with energy production [44].
MFARs may therefore play a relevant role in balancing ecological and industrial interests in
marine environments, promoting green energy production while contributing to preserving
the ocean and its essential function as the most important climate buffer of the planet in
the face of climate change. However, the recent developments seem to show that these
approaches are unavoidably in the path of the development needed for the coming years, as
part of the next-generation systems for integrated monitoring and management of marine
systems [39,40].

Still, it is not clear which design procedure of the prospective modular MFAR must
be undertaken to combine several functions—for example, biodiversity restoration and
coastal erosion—within one MFAR assembly. Furthermore, the adoptability of the foreseen
design for specific environmental conditions, its biological presence and anthropogenic
impact at the deployment zone are not sufficiently discussed yet.

1.1. Geometry and Function

The geometry is one of the most important, yet difficult to establish, characteristics of
an AR. It may be determined by bioinspired features, functional requirements related to the
flourishing and growth of certain organisms, aesthetics and materials. On the other hand,
geometry may be strongly constrained by the requirements derived from the mechanical
behavior and hydrodynamics, mostly when considering functional requirements such as
the regularization of currents for sports activities enhancement such as surfing, or for the
regularization of sediments transit, among many other functions. In order to provide some
of the requirements for AR shape design, a brief overview is provided explaining the link
between AR shape and expected function.
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1.1.1. Fisheries and Biodiversity Restoration

There are numerous planned and existing artificial structures that are aimed at in-
creasing the marine species diversity and biomass in coastal regions. In [41], the author
discusses the key attributes to achieve by a reef design aimed at promoting fisheries and
biodiversity restoration:

• Topology—AR topology should aim at creating spatial diversity and protection from
strong water movements;

• Articulation—Spatial arrangement and structural complexity should be achieved in
order to provide a range of habitats and guarantee protection from predators;

• Texture—The substrate materials and surface finish should be adequate for sessile
(stationary) organisms attachment.

This approach was implemented among a wide range of research projects and proved
to work at different scales [37,42,43] targeting specific species, either fish [44–46] or corals
(for example [47,48]), and creating structures with sophisticated attributes for ecosystems
regeneration [46,49].

1.1.2. Coastal Erosion and Surfing Enhancement

Coastal erosion prevention is a challenging task for many coastal populations due
to global sea level rise and harsh weather conditions. In some cases, it is the occupation
by human activities of areas close to the coast that has been highlighted as one of the
main reasons justifying accelerated coastal erosion [25]. Conventional solutions include
traditional bulky foreshore (breakwaters, groynes, and jetties) and onshore structures
(seawalls, revetments and sea dikes), which may be considered as gray infrastructures, as
previously discussed. In addition, there are other solutions offered by green infrastructures,
which are aimed at performing similar tasks with better ecosystem impact [34]. Coastal
preservation infrastructures combining green and gray approaches are arranged in three
types: built (seawalls, levees, and bulkheads), natural (salt marsh, beach, etc.) and hybrid
(combination of built and natural). Each of these has a list of advantages and disadvantages,
as discussed by the authors in [50]. Depending on the arrangements and options taken,
some related to cultural factors of coastal communities, the designs of the preventive
measures are drastically different. Returning to the AR concept, it is common for bulky
submerged structures to perform two functions simultaneously, namely coastal protection
and surfing enhancement. As discussed in [51], such structures are most frequently created
by employing sand-filled geotextile containers (see Figure 2a) or by piling up rock masses in
situ, occupying relatively large spaces as high as 60,000 m3, typically exhibiting boomerang-
shaped/V-shaped reefs/horseshoes at an orientation with the sharp end to the offshore
direction with respect to the principal wave direction, as shown in Figure 2b.
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1.1.3. Tourism Attraction

Recent initiatives toward the deployment of AR have been aimed at creating jobs and
enhancing local economies, pursuing tourism presence enhancement as well as ecosystem
conservation goals. These AR designs have been greatly influenced by the motivations
of recreational divers, who prefer to dive where “the chance of viewing concentrated
marine life, increased photographic opportunities, and the guarantee of a ‘good dive’ are
provided. In addition, divers express significant concern toward the pressure created in
natural reefs as a result of intensive diving activity. The possibility of using ARs for pro-
viding alternative habitats for marine organisms, and creating alternative attraction spots
for diving, constitutes an effective indirect protection measure for particularly sensitive
natural reefs and habitats, which should be kept off the frenzy of intensive recreational
diving [53]. From the viewpoint of design, typically such structures are materialized by
shipwrecks [54,55], underwater artistic sculptures [56] and sometimes by using additional
acoustic equipment [57]. Summarizing, ARs optimal characteristics for tourism attraction
include significantly large scale and geometry, and unusual features that resemble the
natural ones found underwater.

1.1.4. Artificial Reef Geometry–Function Relationship

In order to provide better insight into the relationship between an AR shape and
its targeted functions, as well as for future referencing, in Figure 3 the different design
approaches found in the literature are classified according to a newly proposed approach.
This approach considers that there are three main groups of functions for ARs, which
may typically lead to antagonistic designs. For example, structures optimized for coastal
defense may privilege heavy and bulky units that may be exposed to sediment deposition,
while reefs designed with the aim of propitiating biological colonization should not be
exposed to the same type of sediment deposition, since it threatens sessile communities and
settlement. The three main groups of typically antagonistic functions may be considered
as: (i) fisheries and biodiversity restoration, (ii) recreational diving and tourism attractions,
and (iii) coastal erosion and surfing enhancement. Considering the predominantly opposed
characteristics of these three main groups of functions, they occupy opposite corners of
this triangle, although in special cases, synergies between these different groups may be
found. Additional levels may be added to subgroups of functions, since these are quite
broad, although the concept is the same.
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In corners of the triangle, snapshots of typical structures are delivered from already
existing projects. It should be remarked that references that discuss ARs with a single
function or a single purpose tend to be located near the respective corner, belonging to
the main functional group. Meanwhile, ARs that simultaneously perform two or more
functions are located at the intermediate space within the triangle in agreement with
the potential functions. For example, underwater monument parks, discussed in [56],
are dedicated solely for recreational tourism, and therefore they do not either create an
optimal habitat or prevent erosion; therefore, it seems reasonable to locate it next to the
corner of the ‘Recreational diving and tourism attraction’. However, another example
is found in [19], where the MFAR was designed with the aim of contributing to at least
two functions—‘coastal protection’/‘surfing enhancement’—while supporting the local
biodiversity. Since the design process did not consider the development of characteristics
considered as attractive for diving, which may actually be considered as incompatible with
surfing or coastal protection functions, this design occupies a position in the triangle that is
halfway between the ‘biodiversity restoration’ and the ‘surfing enhancement’ functions,
while standing far from the ‘recreational diving’ function.

1.2. Deployment Area

One possible way to test the efficiency of the MFAR is to simulate the behavior of
the proposed design and concept at prospective specific deployment locations. For this, a
well-described Marine Protected Area (MPA), the Littoral North Marine Park in Esposende,
Portugal was considered in this study. The abundance of the environmental, biological
and cultural information in this MPA allows us to analyze the potential of installing an
AR structure and function. The biota data provides evidence of several species present
in the area, for example sea kelp (Laminaria hyperborean), red seaweed (Dilsea carnosa,
Kallymenia reniformis, Chondrus crispus, Plocamium cartilagineum and Corallina officinalis),
starfish (Asterias rubens and Marthasterias glacialis), and sea urchins (Echinus esculentus),
along with wrasse (Ctenolabrus rupestris, Labrus bergylta, Symphodus bailloni, Coris julis and
Centrolabrus exoletus) and blennies (Parablennius pilicornis and Parablennius gattorugine).
Some crustaceans are present as well, for example lobster (Hommarus gammarus), velvet
and spider crabs and molluscs (particularly Octopus vulgaris). In accordance with the
MPA management plan, among priority species for the conservation is white seabream
(Diplodus vulgaris) and European bass (Dicentrarchus labrax). Additionally, this MPA is
a local attraction for recreational divers due to the close proximity of shipwrecks and
underwater natural heritage locations. Finally, due to a strong exposure to waves, erosion
is severely impacting the beaches and imposing morphological changes.

Considering this, it may be beneficial to the MPA to develop a MFAR system that
may efficiently perform functions associated with ecosystem restoration, tourism attraction
and erosion mitigation, based on a functional unit and adopting nature-based coastal
infrastructure principles.

1.3. Design Process and Biomimicking

Keeping in mind previous considerations for the AR design for a specific purpose, the
next step is to establish the initial design of the MFAR. For this, biomimicking principles
adopt, to a certain extent, the natural substrate shapes and topologies, as described in [58].
The biomimicking approach is important for the MFAR and pursues features that are
similar to the ones found in the surrounding natural reefs, which were created by natural
processes [13,59,60]. Such natural reefs exhibit the surface and bulk features that are
favorable for the local organisms, thus elevating the importance of guaranteeing micro and
macro topology complexity of the MFAR similar to natural rocky reefs; see Figure 4.

Considering that there is still a lack of objective and well-defined design procedures
that relate requirements with the design parameters of ARs, this research is dedicated
to contributing to the development of alternative design approaches. The goal is to ap-
proximate the design process based on a set of parameters and the MFAR requirements,
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to improve the MFAR design and obtain the required performance in several functions
within one structure. Furthermore, the main goal was to pursue a parametric design
approach for MFAR where specific design parameters may be directly related to MFAR
target functions and design requirements. Parametric design adoption for conceiving and
replicating natural features is discussed in Section 2. The analysis of the obtained workflow,
delivered assemblies and created prototypes, rethinking, and provided results are disclosed
in Section 3. The peculiarities of the designs obtained are analyzed and discussed, as well
as the typical geometry and shape definition criteria adopted in Section 4.

J. Mar. Sci. Eng. 2024, 12, x FOR PEER REVIEW 7 of 26 
 

 

for recreational divers due to the close proximity of shipwrecks and underwater natural 
heritage locations. Finally, due to a strong exposure to waves, erosion is severely impact-
ing the beaches and imposing morphological changes.  

Considering this, it may be beneficial to the MPA to develop a MFAR system that 
may efficiently perform functions associated with ecosystem restoration, tourism attrac-
tion and erosion mitigation, based on a functional unit and adopting nature-based coastal 
infrastructure principles.  

1.3. Design Process and Biomimicking 
Keeping in mind previous considerations for the AR design for a specific purpose, 

the next step is to establish the initial design of the MFAR. For this, biomimicking princi-
ples adopt, to a certain extent, the natural substrate shapes and topologies, as described 
in [58]. The biomimicking approach is important for the MFAR and pursues features that 
are similar to the ones found in the surrounding natural reefs, which were created by nat-
ural processes [13,59,60]. Such natural reefs exhibit the surface and bulk features that are 
favorable for the local organisms, thus elevating the importance of guaranteeing micro 
and macro topology complexity of the MFAR similar to natural rocky reefs; see Figure 4.  

 
Figure 4. Large scale underwater rocky formations at the MPA close to Esposende, Portugal. 

Considering that there is still a lack of objective and well-defined design procedures 
that relate requirements with the design parameters of ARs, this research is dedicated to 
contributing to the development of alternative design approaches. The goal is to approxi-
mate the design process based on a set of parameters and the MFAR requirements, to 
improve the MFAR design and obtain the required performance in several functions 
within one structure. Furthermore, the main goal was to pursue a parametric design ap-
proach for MFAR where specific design parameters may be directly related to MFAR tar-
get functions and design requirements. Parametric design adoption for conceiving and 
replicating natural features is discussed in Section 2. The analysis of the obtained work-
flow, delivered assemblies and created prototypes, rethinking, and provided results are 
disclosed in Section 3. The peculiarities of the designs obtained are analyzed and dis-
cussed, as well as the typical geometry and shape definition criteria adopted in Section 4.  

2. Materials and Methods 
2.1. Parametric Design-Based Approach 

The historic approach to ARs around the world has been based on the use of scrap 
material: decommissioning ships and oil rigs, piling tires, dumping vehicles and other 
waste products [55,61–64]. The proposed MFAR design methodology implies combining 
the previously mentioned functions for ARs in terms of shape, size and other features in 
a rational procedure that allows for utilizing the prospective structures with maximum 
efficiency. In order to apply this methodology, the design workflow and the steps that 
need to be undertaken from the concept until the prototype is reached, need to be estab-
lished.  

Figure 4. Large scale underwater rocky formations at the MPA close to Esposende, Portugal.

2. Materials and Methods
2.1. Parametric Design-Based Approach

The historic approach to ARs around the world has been based on the use of scrap
material: decommissioning ships and oil rigs, piling tires, dumping vehicles and other
waste products [55,61–64]. The proposed MFAR design methodology implies combining
the previously mentioned functions for ARs in terms of shape, size and other features in
a rational procedure that allows for utilizing the prospective structures with maximum
efficiency. In order to apply this methodology, the design workflow and the steps that need
to be undertaken from the concept until the prototype is reached, need to be established.

For this, a set of rules and references for regulating the geometry of a single unit
and unit arrangement was adopted. The purpose was to create a limitless number of
morphologically different versions of the final unit design. Such an approach following the
parametric design approach [65] was adopted.

Parametric design is opposed to conventional CAD design in that the shape should not
be conceived beforehand. Instead, the shape should evolve as result of the data/parameters
applied, and later the resulting form can be modified and adapted in a new iteration with
the next set of algorithms. The output shape of the unit or assembly developed with a
parametric design is then translated into the required format for subsequent manufacturing,
for example G-code. This format is then used for computer aided manufacturing processes,
for example using conventional 3D printing methods using plastic materials [66], or using
clay or ceramic materials [60,67]. Parametric design allows for a reflexive design process,
and unlike traditional design methods, it allows mass customization at a convenient
and faster level. It allows a dynamic and responsive design process that can be tailored
in a holistic way to specific environmental conditions and requirements. By scripting
design intent into computational models, parametric design facilitates iterative exploration,
optimization, and customization, fostering innovation and efficiency in the design process.

Furthermore, another advantage of employing this approach is the sustainability
factor that implies optimizing the material usage as well as ecological integration into the
ecosystem by fostering symbiotic relationships between artificial structures and native
marine ecosystems. Ultimately, parametrically designed MFARs may also allow dedicated
studies to identify the relationship between design parameters of the parametric design
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and the ecological response generated, opening up new perspectives for the development
of rational procedures for MFAR requirements-oriented design methods.

Rhino3D® version 6 software with Grasshopper® plug-in was used as the main tool for
conception and geometric design of the MFAR unit, as these employ visual programming
tools for parametric designing approaches [60]. The use of these conception and design
tools for the achievement of various rules for constructing shapes and geometries of diverse
complexity and maturity is considered as the most promising, considering the large user
communities. Additionally, the ability of the software to export the created computer
models for additive manufacturing benefits the subsequent rapid prototyping.

Each unit in this concept consists of a parametrically designed part, which starts as a
sphere and multiple tubes that emerge from the sphere surface and have the blind end at a
surface parallel to one face of a virtual cube. The main part of the concept relies on this
shape and the dimensions of the central sphere. Each tube is designed using parametric
computational tools and may vary from one case to another, considering biomimicking
principles and the requirements of the marine structures, e.g., stiffness, robustness and
environmental compatibility. This brings the flexibility required to the structural design of
the final AR, which is of extreme importance due to the nature of the seabed properties—
inhomogeneity, sand/rock structure, variable bathymetry etc. In addition, the possible
functions of the AR may comprehend marine biodiversity restoration, shore protection,
self-monitoring, environmental monitoring, and other secondary functions. In other words,
the constructed system will comply with the requirements of a MFAR ready to combine the
highest number of potential functions, serving as an underwater complex system.

There are a few strict requirements to accomplish the prospective structure of the AR.
To define the geometries, the most relevant requirements considered in the design of the
structural module or unit are subsequently summarized:

• Adoption of a natural reef mimicking shape: natural marine habitats adopt topologies
that are determined by environmental exposure conditions, as well as organisms’
growth at the micro and macro level. These are optimal for specific flora and fauna
species at different levels of the food chain, exhibiting structural complexity typical of
natural habitats [68];

• Various assembly possibilities and macro-arrangements: this is achieved by introduc-
ing modular construction, which offers a wider range of structural possibilities based
on a limited number of units, optimizing costs and resources. These become of great
importance when local effects are taken into account, e.g., the bathymetry profile,
organisms’ diversity, currents and wave principal directions, and AR dimensions,
among others;

• Expanded AR functions: technological and engineered ARs may offer other pos-
sibilities to secure a wider set of functions that an AR can perform, based on the
embedment of systems and networks that conventional gray infrastructures do not
include. Examples are energy sources, interconnected electric and electronic networks
and sensors. These enhance taking advantage of the huge resources typically allocated
to build an AR, contributing to a wider range of functions aimed at marine ecosystems
restoration [19];

• Semi-permeable structure: unlike the massive coastal protection structures described
previously, the final geometry is required to be reticulated, geometrically complex and
spatially distributed, maintaining the requirement of biomimicking, while guaran-
teeing benefits for direct or indirect erosion prevention (example: the creation of AR
barriers, discussed in Section 3.4);

• Attractive to tourists, recreational divers and local communities: in order to gen-
erate interest from divers and tourists, the geometry and other AR features are re-
quired to guarantee appealing features not only to marine biodiversity but also to the
human population;

• Iterative design sequence: after the starting stage of delivering the initial shape, proto-
typing and testing follows. The analysis of the results obtained after the preliminary
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testing of the initial shape results in a series of additional design features to be im-
plemented, which are reconsidered and possibly implemented. Then, a new stage of
prototyping and testing follows, until the optimal design of the MFAR is assumed as
properly satisfying the current design and application requirements.

Subsequent stages of this study will include the development of advanced manu-
facturing processes that make possible some of the most complex geometries developed.
Responding to the requirements mentioned previously, the steps that have been followed
as part of the design procedure are described subsequently.

2.2. Design Procedures and Variable

An initial inspiration for defining the biomimetic design of the MFAR was taken
from the natural shapes and features of a coral reef branch, following the concept of
biomimicking, as shown in Figure 5a. At a larger scale, also the shapes of reefs and rocky
substrates as well as small caverns have been considered, as these natural shapes and
features may constitute appealing characteristics to organisms. The first design of the
module was made departing from a virtual cube, which represents the maximum occupied
space of one unit in a 3D array of other units. Furthermore, each unit should have at least
one rigid connection with other neighboring units, which results in a maximum number
of six connections according to the number of cube faces, granting the ability of the AR
anatomy to perform as a modular structure. However, another option taken in the design
was to restrict the number of connecting faces to three in order to simplify its structure.
Afterward, one of the faces was chosen to have dual connection points. The two other
faces had only a single connection point. Each single connection point was located at the
geometrical center of a cube face in order to allow the connection between units at different
rotation angles.
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of the future unit and MFAR design, (b) pilot design of the MFAR modular unit.

Another typical characteristic of natural structures and reefs is the complex distribution
of features, scales, textures and properties. The “complexity” characteristic that is typical of
natural structures was explored in the current design in different ways, one of those at the
level of the unit, by defining random locations for the dual connection points of the unit
when picking the respective cube face. After defining the location of the connection points
between neighboring units, the tubes were designed and connected at the geometrical
center of the cube. Dual connection points offer higher variability of AR assemblages as
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they allow two units at one face of the cube to join, while single connection points support
only one connection to another neighboring unit at one of the cube faces.

After establishing the basic rules and parameters of the reef design to be developed,
subsequent advancements of the structural design details were performed using the para-
metric features and visual programming of Rhino3D® and Grasshopper® tools. These
advancements included the study of several variables following the parametric design
principle, including the change of curvature levels, the variation of pipes radii and the
altering of the positioning of the dual connection points, as well as other features aimed at
changing the surface roughness and features properties. At the end of this process, a pilot
design for the unit was delivered, as shown in Figure 5b.

The pilot design of the module had several imperfections, among those the anticipated
problems in concrete casting and demolding of the units, as well as the obvious weaknesses
in terms of stiffness of the overall assembled structure. In addition, it was decided that
the connecting faces of the unit should assume the same size and cross-section geometry
to allow for seamless connections between units at varying rotational angles considering
the axis of rotation as the one perpendicular to the connection surface. This feature was
expected to allow more geometrical variability of the AR arrangement. After slightly
varying the radii of the joining faces and adding a sphere shape located at the geometrical
center of the cube, another alternative initial design of the unit was obtained, as shown
in Figure 6a.
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Figure 6. MFAR module design depiction: (a) base skeleton of the geometry with connection points
(green crosses) where curves depict the curvature of tubes and the circle in the center depicts the
sphere geometry; (b) module geometry prepared for subsequent prototyping.

As a demonstration of the parametric design approach and its flexibility when applied
to the MFAR design, the following example is provided in Figure 7. The provided case
serves a representation of the parametric design capabilities applied to the MFAR design
and does not represent the finalized engineering design; therefore, functional elements
such as connectors between units, manufacturing material and method of fabrication are
not included. The structure (a) consists of four units, shown in Figure 6b, interconnected in
a manner that all tubes, except the double connection ones, are mutually connected. The
sliding “index” parameters (variables) shown in the visual programming graphic interface,
at the bottom right, are related to the initial position of the double tube at the surface of
the virtual box. The top and bottom indexes are related to the position of the first and the
second tube, respectively. By varying both indexes by simply sliding the bar, the double
tube position changes appropriately at every location where the unit is involved, as shown
in Figure 7b,c. This example is replicable to any other of the 60 variables used to describe
the developed model, including the number of pieces and module arrangements, which
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allow for modifying the unit shape, the micro- and macro- overall arrangement, as well as
the surface properties of the modular MFAR in a rapid and very interactive fashion.
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Figure 7. Variations of the geometry made possible by the parametric design approach of the
modular AR: (a) initial arrangement of four modules, (b,c) same arrangement but changed by only
manipulating a double tube end location index in the graphical interface of the parametric design
software (bottom right).

Aiming at adding more features for better performance of the structure in terms of
marine colonization, parametric design tools offer the possibility of surface refinement
adding topology such as cavities and fissures, regarded as creating micro-level complex-
ity. These features are typically encountered among the living corals and other natural
reefs. An example of the enhanced topology is shown in Figure 8a, which was created by
introducing Boolean operations with spherical and toroid objects, interpolated curves, and
randomly distributed geometries on the initial unit geometry. Such modification allows
the individual structural unit to perform as an effective AR, adaptable to the preferences
and behaviors of particular fish species or other organisms by replicating their natural
habitat condition [41,42,69,70]. Furthermore, as indicated in [71,72], coral larvae are more
likely to settle on substrates that have millimeter-scale ridges. This suggests that larvae
prefer surfaces with textures that match their size, maximizing the number of attachment
points and thus increasing settlement success. Coral larvae exhibit a preference for these
microtopographies even in the absence of chemical cues, indicating the crucial role of
physical structure in their settlement behavior. Additionally, fractal and complex surface
structures provide various microhabitats and attachment points that can support larger
and more diverse gorgonian populations. Habitat heterogeneity, driven by factors such as
reef complexity and topographical variations, has been shown to enhance the biodiversity
and resilience of marine ecosystems [73,74]. This provides a clue as to how generic data
from biotic parameters such as fish, larvae and gorgonians settlement enhancement can be
adopted to the MFAR micro and macro topology using parametric design tools. Similar
to the case represented in Figure 7, the designs depicted show the potential of paramet-
ric design tools for this purpose, while omitting the fabrication process and associated
engineering considerations such as final dimensions, mass and material properties.
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(a) surface refinement of the AR unit using Boolean operations with various geometries and
(b) randomly mutually oriented and distributed three-dimensional array of a module.

3. Results
3.1. First MFAR Unit and Assembly Prototyping

By employing the initial geometry of the unit (see Figure 6b), a wide range of MFAR
assemblies were reached. One of those assemblies is presented in Figure 9a, which is
formed simply by manipulating mutual connections of the unit at different levels. Another
option for the MFAR assembly, involving the same geometry for the unit but adding the
surface refinement and tackling the mutual arrangement, resulted in the structure shown in
Figure 9b. This virtual model meets the requirements mentioned in Section 1.3; for example,
it shows an organic and somehow mimicking shape resembling natural structures, such
as the ones shown previously. The AR arrangement achieved features with several other
functions, such as: (i) parametrized micro- and macro- geometrical features, allowing it to
embody different complexities at different scales aimed at marine restoration; (ii) optimal
locations for the installation of structural and environmental monitoring (SHM) systems,
as discussed in [75–77]; (iii) visually appealing configurations from the viewpoint of recre-
ational diving [78], and (iv) by installing electromechanical system in joints between units
performing as an energy harvesting system [79,80]. The MFAR final design is anticipated
to encompass five functions within the same structure, created by handling the individual
unit and considering specific approaches to design and assemble these systems.

The first prototype was delivered considering the development of subsequent studies
in a water flume, with a cube edge of 50 mm. Later, the 3D model of the unit was imported to
the printing software and fabricated using an additive manufacturing 3D Fused Deposition
Modeling approach, using a thermoplastic filament widely used in marine applications
for making the natural-like shapes of living habitats [66]. The fabricated pieces are shown
in Figure 10a, and were later used as a matrix for creating the silicon molds for casting
the concrete prototypes. The purpose of the produced pieces was to create assemblies of
the prospective AR and do a first assessment of the variability of the AR arrangements.
After casting all units, the resulting set of units (see Figure 10b) was connected in order to
produce the prospective MFAR assembly, shown in Figure 10c with approximately 250 mm
height and 220 mm width, similar to the model geometry shown in Figure 9b. One can
notice that, due to imperfections during the concrete casting process, small cavities are
present, which could well be assumed as an advantage and an added surface topology
feature, which at large scale can perform as shelters in case these persist in the real scale
size units after fabrication.
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3.2. Second MFAR Prototyping

After analyzing the results obtained at the end of the first prototyping stage, a slightly
different approach was used, aiming at creating a higher level of complexity compared to
the first MFAR prototype. The geometry of one unit was mirrored with respect to one of the
virtual box planes to create a joint of two modules. In addition, to enhance the structural
integrity, the radius of the central sphere was increased; see Figure 11a,b.

The resulting assemblies, including the modified geometries, are shown in Figure 11c, where:

1. Assembly (1): consists of a two levels arrangement, depicting a parallelogram shape
in the horizontal plane;

2. Assembly (2): is essentially similar to assembly (1), but two additional modules have
been included at the top of the two base levels, increasing the niche volume and
complexity with just a couple of additional units;

3. Assembly (3): consists of an arrangement that was optimized for divers to be able to
enter the structure and navigate through it, like a cavity or a square “window”;



J. Mar. Sci. Eng. 2024, 12, 1682 14 of 25

4. Assembly (4): represents the arrangement of a reticulated and vertically expanded
structure, which in a horizontal projection has a circular shape; this arrangement
maximizes the 3D sheltering effect while still allowing for easy diver access. It may
also induce upwelling effects and change sediment settling, as found in preliminary
studies carried out with prototypes in a hydraulic flume, described in [81,82].
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Figure 11. Virtual representation of MFAR arrangement involving the modified geometry of the units:
(a) increased sphere radius at the center of the module structure; (b) mirrored pieces joint; (c) MFAR
arrangements offered by two types of module geometries—initial and mirrored, enumeration is
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Preliminary studies on both the structural behavior and on the effect of hydrodynamic
actions on the reef conceptual design have resulted in reasonable safety factors and revealed
the weakest structural regions, as well as possible failure mechanisms [83]. Furthermore,
structures (2, 4) are somewhat expanded in the vertical direction, and have a difficult in
situ assembly process by simple means and from the available modules. Finally, struc-
ture (1) performs all required functions discussed above; therefore, it was chosen for the
prototyping. In Figure 12a, a zoomed look on the structural assembly is shown.
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modular pieces (b).

3.3. Modifiable Parameters of the Digital Design Model

The number and variations of the modular parts in the MFAR lie in a vast range
of parameters of each unit and the prospective location of the instalment; therefore, this
number may vary between 2 and unlimited.

As shown in Section 2.1, by simply manipulating the parameters of the parametric
model, the shape, topology and assemblies can vary drastically within quite a large scale,
allowing for the creation of rather flexible solutions of module geometries. This can be
demonstrated by updating the previously mentioned Figure 3 that the proposed system
belongs to a region that lies in a cloud of available shapes in the middle of the triangle,
where the arrow points at the developed MFAR system; see Figure 13. It is worth noting
that based on the literature review conducted and to the best of the authors’ knowledge,
examples with potential shape features that may be related to the bottom region of the
triangle, between the “Recreational diving” and “Coastal erosion”, are nonexistent.

After careful consideration, all functions of the prospective underwater system unit,
as well as how the MFAR structure can support such functions, are summarized in Table 1.

Table 1. Functions of the MFAR and means to support it.

Function MFAR Capability

Coastal protection Large mass of overall assembled construction and horizontal interconnection.

Biodiversity restoration Various openings between modules and irregular shape; bioreceptive concrete as a base material
for reef structure.

Fishery enhancement Increasing quantity and diversity of marine habitats leads to accelerating fishery enhancing.

Sensor platform Sufficient availability of structure blind ends and connecting nodes between modules guaranteeing
a conductive path adapted for sensors installation.

Energy harvesting Spatially reticulated structure that oscillates significantly due to environmental actions.

Scientific research Repeatability of the final structure and possibility to have equivalent conditions across the MFAR opens
possibilities for parametric studies in marine biology, ecology, engineering, morphology etc.

Modules intercommunication Metallic reinforcement and nodal connections of the MFAR serves as a communication platform between
modules across the whole spatial structure.

Tourism encouraging Exotic and unusual shape of assembled MFAR may lead to increased recreational activities.
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3.4. Application of the Designed MFAR within the MPA

As indicated in Section 1.2, the MFAR design/deployment site is an MPA. In this
case, one location in Esposende, Portugal was hypothesized. An effective interaction
of the MFAR with the marine environment would be based on guaranteeing the MFAR
required functions to be in place. This can be achieved through several ways, divided in
the following discussion into three groups.

Initially, the fishery and biodiversity restoration functions may be achieved by adapt-
ing the MFAR geometry for species that are present at the MFAR deployment zone. Cavities
and caves, which may be parametrically designed within the MFAR structure as surface
refinements at the smaller scale, such as the ones shown in Figures 8a and 9b, are preferred
by mollusks and crustaceans, which mostly choose closed spaces within AR structures [84]
and foundations [85]. The populations of fish considered for commercial exploitation such
as seabass may be promoted by introducing the turtle-shaped MFAR unit arrangement, as
discussed in [86]. One of the possible unit arrangements and beneficial effects for fisheries
promotion associated with the proposed MFAR structure-induced flow transformation is
described in detail by [87]. By exposing the MFAR structure to an incoming flow that is
typical of the deployment location, significant upwelling and wake regions are formed,
thus providing the optimal feeding and habitat conditions for target fish species. Such an
MFAR structure may be installed within a single AR project or in the framework of the
coastal infrastructure taking into account specific biotic or abiotic treatments offered by the
MFAR concept, as discussed in Table 2.
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Table 2. Overview of biotic and abiotic parameters to be considered in the parametric design.

Parameter Type MFAR Functionality MFAR Characteristic Related to
the Biotic or Abiotic Parameter

Marine biodiversity

Biotic

MFAR provides habitats for
various marine species,
promoting biodiversity

restoration by offering shelter,
breeding grounds,

and feeding opportunities.

Higher number of cavities and
higher effective surface.

Fish populations

MFAR enhances fish population
by creating new habitats and
attracting fish to areas where

natural habitats may be degraded
or absent.

Larger cavities and larger
structures optimized for creating

the upwelling.

Coral growth

Artificial reefs can serve as
substrates for coral larvae to settle

and grow, aiding in coral reef
restoration and expansion.

Higher surface roughness, higher
number of small cavities.

Algal coverage

Artificial reefs can influence algal
growth by providing surfaces for

attachment, which can both
support the food web and

potentially outcompete corals or
other desired species

if not managed.

Low curvature shapes with
repeatable patterns, less or absent

internal cavities and spaces.

Sediment stabilization

Abiotic

Artificial reefs can stabilize
sediments by reducing water flow

and wave energy, preventing
erosion and creating more stable

environments for marine life.

Higher volume of used material
on wider deployment area.

Light availability

Artificial reefs can create shaded
areas that reduce light

penetration, which can benefit
certain species that require lower
light levels and protect them from

harmful UV radiation.

Higher number of internal cavities
and low number of cavities

exposed outside of the MFAR.
Adopt “turtle” shaped MFAR.

Recreational diving

By designing visually attractive
and unusual MFAR shapes, when
abundantly colonized by marine

life structures they serve as a
diver’s attraction.

High curvature shapes distributed
on a wide area.

Nutrient levels

By providing surfaces for biofilm
formation and algal growth,
artificial reefs can influence
nutrient cycling, potentially

reducing excess nutrients through
biological uptake.

Higher surface roughness, higher
number of small cavities.

Secondly, an extension of the modular and parametric concept studied and developed
can be applied to the design of larger-scale structures. For example, a reef barrier along
the shoreline, which can be integrated into the hybrid or green coastal infrastructure, can
address the problem of erosion and scour in the MPA associated with the wave action.
Other authors have shown its effectiveness in shoreline contexts [23,28,42,88]. In order to
create an expanded MFAR system using the designed units and the modular approach
previously described, a parametric design was used to produce the repetitive modules
in the horizontal direction, thus establishing what could be regarded as a reef “barrier”,
resulting in a MFAR assembly of several full-scale smaller MFAR units to perform as a
shore protection mechanism, among all of the other functions previously discussed. By
employing the MFAR assembly (2) from Figure 12a and joining several similar mono-
MFARs along one line with pairs of mirrored unit connections, the digital model of the
expanded MFAR system was obtained; see Figure 14. In the context of the MFAR “barrier”
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concept, no further investigation was performed in terms of materials, structural durability,
or hydrodynamic interaction. However, the estimation of the long-term environmental
behavior and effect on the environment are regarded as very relevant future studies.
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Figure 14. Reef barrier parametrically designed and assembled from the multiple MFARs with
connecting nodes.

On the other hand, while parametric design offers significant advantages for singular
MFAR and MFAR barrier development, several challenges remain to be addressed. These
include the need to combine interdisciplinary collaborations among designers, marine
biologists, ecologists and engineers in order to establish the relationships between the
parametric design variables and the outcomes in terms of environmental effects and impacts
obtained. The development of robust monitoring and evaluation frameworks to assess the
long-term performance of parametrically designed reef structures is also relevant.

Finally, recreational divers are typically present in the MPA and are found visiting
underwater natural heritages with a variety of biota, archeological artifacts and shipwrecks,
or looking for new experiences. Therefore, the presence of a biomimetic structure that may
be colonized in a similar way as rocky reefs native to the MPA zone may provide a new
AR-based tool oriented to improve the diving experience and promote the presence of
recreational divers in controlled areas. This may benefit the MPA zone by enhancing the
local economy and eventually protecting other sensitive areas from the divers by promoting
attraction spots in the MPA at distant locations from sensitive areas [89,90].

3.5. Performance Indicators

Section 1.1.1 provides the geometrical features of an AR designed for fisheries and
biodiversity restoration. However, it is important to understand how the decisions with
regards to the different design variables impact the successful performance of an AR. For
this, one important process in the design stage is to conduct a comprehensive Computa-
tional Fluid Dynamics (CFD) analysis in order to evaluate the effectiveness of an AR design
for promoting the required flow interactions by evaluating the upwelling and wake region
volumes, such as proposed by [91,92]. The volume of wake and upwelling regions for a
modular artificial reef were assessed and discussed by [87]. However, a comprehensive
CFD study of various complex shaped MFAR designs may pose a significant computational
challenge, being time consuming and complex. The decision support in the design stage
needs to adopt an alternative approach, which should allow the designer to make decisions
about the application requirements based on analytical calculations.
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Structural complexity may be one of the variables aiding in the design process, and
the calculation of the complexity index (SI) is proposed in this study. According to the
formulations proposed by [93], the SI index is computed according to Equation (1):

ϕs =
At

Ab
, (1)

where At is the total surface area of the MFAR with all surface cavities and refinements, and
Ab is the bottom projection area that is evaluated as the projection of the entire structure on
the base plane; see Figure 15.
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Parametric design is particularly useful for iteratively computing the total surface of
the MFAR At using a single operation, as well as further optimization. On the other hand,
the bottom projection area Ab represents the rectangular area occupied by the MFAR, as
suggested by [93,94], obtained by the vertical projection at the base plane. In the present
research, the vertical projection of the 3D shape at the base plane of the entire MFAR
structure is a complex shape (see Figure 15); therefore, Ab is proposed to represent this
projection on the base plane, as shown in the red shape in Figure 15.

As discussed in Section 3.3, the digital model of the delivered MFAR can be modified
in various ways, including the surface refinement. Such surface refinement can be based on
creating nest cavities that vary in dimensions and target the restoration of specific species
and habitats of the ecosystem at the prospective deployment location [95,96]. Furthermore,
the refinement elements will impact the SI values since the total surface and bottom
projection areas may change accordingly. In order to replicate nest cavities of different
sizes and evaluate their impact on the final SI, a surface refinement approach was analyzed.
First, 400 spherical objects with various radii were randomly positioned on the surface of
the MFAR structure and then a Boolean operation of solid difference was applied aiming to
recreate the surface refinement shown in Figure 8. Applying various sphere dimensions
leads to various nest cavity sizes targeting specific marine species. In total, four cases were
considered: (1) no surface refinement applied to the initial MFAR; (2) surface refinement
performed by randomly positioned spherical objects on the surface of the MFAR with
random radii varying between 25 mm and 50 mm, (3) between 25 mm and 100 mm, and
(4) between 50 mm and 100 mm. The resulting geometries of the four cases of surface
refinement on MFAR shapes are shown in Figure 16. The final visual coding algorithm
developed with Grasshopper® within Rhino® involved more than 300 blocks with more
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than 50 variables. The entire code included the units design, the relative positioning
between units, and the surface and roughness alterations using a random distribution.
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Figure 16. Four cases of surface refinement in order to evaluate the complexity index.

After the surface refinement with spherical objects was applied to all four cases, the
following geometrical parameters were derived: total surface area At, bottom projection
area Ab, complexity index ϕs, as well as total structure volume. The “ϕs difference” and
“volume difference” rows provide the difference of results between the reference case
(case 1) and each of the other surface refinement variations (cases 2 to 4), respectively.
Obtained results of SI calculation and total MFAR volume are summarized in Table 3. The
“ϕs difference” and “Volume difference” rows provide the difference of results between the
case 1 and cases 2 to 4, respectively.

Table 3. Complexity index and mass calculation for the proposed MFAR.

Parameters Case 1 Case 2 Case 3 Case 4

Total MFAR area, m2 25.17 26.65 28.68 30.49
Bottom projection area, m2 4.807 4.802 4.797 4.791

Structural complexity ϕs 5.23 5.54 5.97 6.36
ϕs difference 0 5.9% 14.1% 21.6%

Total volume, m3 1.76 1.71 1.56 1.29
Volume difference 0 2.8% 11.3% 26.7%

The results shown in Table 2 suggest that, by using the parametric design and applying
a relatively simple surface refinement on the initial MFAR, the outcome can lead to a
significant increase in SI values, reaching up to a 21.6% difference for case 4 when compared
to the reference design (case 1). As demonstrated by [93], the SI tends to be linearly
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proportional to the wake volume created behind the MFAR in the water flow for ARs with
a rectangular shape and, in this case, with oyster shells on the top part. Thus, it is assumed
that for cases 1 to 4 there is an increase in the wake volume that is proportional to the total
surface area, therefore somewhat proportionally promoting positive effects on fisheries and
biodiversity restoration MFAR functions.

Finally, the total volume was calculated and by applying the very coarse surface
refinement of case 4, a difference of 26.7% was achieved when comparing to the reference
case 1. Taking this into account, case 4 may be considered as the solution that occupies the
largest space with the least total volume of manufacturing material required to create a
single MFAR, which represents less than 1/4 compared to the reference design (case 1) and
may lead to more sustainable designs when considering such surface refinement.

4. Conclusions

This research proposed a novel approach to the design of modular MFAR involving
parametric design with visual programming tools. Such an approach is proposed for
application to parametrically designed modular multi-functional artificial reefs assembled
from separate and equal or similar modular parts in various planes and angles in relation
to each other in order to arrange the whole structure. The parametric design approach
is based on a set of parameters that determine the surface and geometry features of the
MFAR and make it particularly interesting for further studies oriented to the definition of
optimal parameters considering technical, economic, environmental, and biological design
requirements.

This method supports the creation of geometrically complex, multifunctional ma-
rine structures, offering new possibilities for biomimetic designs with multiple levels of
structural complexity. The modular construction approach enables the building of large, in-
tricate structures from a small number of well-designed units. Parametric design enhances
modularity by simulating various arrangements and their effects, making it easier to test
and optimize different configurations.

Moreover, the integrated design framework seamlessly combines various design
aspects, including structural, hydrodynamic and mechanical design, as well as virtual
simulations and ecosystem interactions. This comprehensive approach ensures that the
design process is holistic, considering all scales from individual units to macro-structures,
and aligns with fabrication and assembly procedures based on a virtual model.

The application to a location in the north Atlantic of Portugal allowed matching the
design to the specific deployment location and requirements, considering species conser-
vation, bathymetry, and recreational needs. This method allowed for directly linking the
specific ecological functions of MFAR with engineering variables, leading to more effective
and sustainable artificial reef solutions for marine conservation and coastal management.
It was also shown that surface refinements in the form of randomly sized nested cavities
can be incorporated, aiming at the restoration of specific marine species. In this case, the
structural complexity index increased up to 21.6% and decreased the use of structural
material down to 26.7% compared to the reference design. As a result, a framework where
the design parameters were directly related to the MFAR target functions was developed,
providing a first step in such a direction. This example shows the potential of computational
algorithms and generative processes for MFAR innovative and purpose-oriented design.
This allows future studies to directly link MFAR performance to design parameters, paving
the way for fully engineered, performance-based MFAR designs, including integrated
sensing systems introduced on the design stage. Systematic field studies are needed to
validate the design approaches investigated, where the design variables may be studied
separately and directly related to performance indicators of the MFAR. The potential of
computational algorithms and generative processes for MFAR can be further enhanced by
complicating the parametric design to include natural complexity.
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